Alternative Objective Functions for Training MT Evaluation Metrics

نویسندگان

  • Milos Stanojevic
  • Khalil Sima'an
چکیده

MT evaluation metrics are tested for correlation with human judgments either at the sentenceor the corpus-level. Trained metrics ignore corpus-level judgments and are trained for high sentence-level correlation only. We show that training only for one objective (sentence or corpus level), can not only harm the performance on the other objective, but it can also be suboptimal for the objective being optimized. To this end we present a metric trained for corpus-level and show empirical comparison against a metric trained for sentencelevel exemplifying how their performance may vary per language pair, type and level of judgment. Subsequently we propose a model trained to optimize both objectives simultaneously and show that it is far more stable than–and on average outperforms– both models on both objectives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

The Best Lexical Metric for Phrase-Based Statistical MT System Optimization

Translation systems are generally trained to optimize BLEU, but many alternative metrics are available. We explore how optimizing toward various automatic evaluation metrics (BLEU, METEOR, NIST, TER) affects the resulting model. We train a state-of-the-art MT system using MERT on many parameterizations of each metric and evaluate the resulting models on the other metrics and also using human ju...

متن کامل

Improving machine translation by training against an automatic semantic frame based evaluation metric

We present the first ever results showing that tuning a machine translation system against a semantic frame based objective function, MEANT, produces more robustly adequate translations than tuning against BLEU or TER as measured across commonly used metrics and human subjective evaluation. Moreover, for informal web forum data, human evaluators preferredMEANT-tuned systems over BLEUor TER-tune...

متن کامل

Unsupervised vs. supervised weight estimation for semantic MT evaluation metrics

We present an unsupervised approach to estimate the appropriate degree of contribution of each semantic role type for semantic translation evaluation, yielding a semantic MT evaluation metric whose correlation with human adequacy judgments is comparable to that of recent supervised approaches but without the high cost of a human-ranked training corpus. Our new unsupervised estimation approach i...

متن کامل

Improving machine translation into Chinese by tuning against Chinese MEANT

We present the first ever results showing that Chinese MT output is significantly improved by tuning a MT system against a semantic frame based objective function, MEANT, rather than an n-gram based objective function, BLEU, as measured across commonly used metrics and different test sets. Recent work showed that by preserving the meaning of the translations as captured by semantic frames in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017